

Department of Advanced Energy

Introduction of Hypersonic Wind Tunnel at UT Kashiwa Campus

http://daedalus.k.u- tokyo.ac.jp/wt/wt_index.htm (in Japanese)

Kojiro Suzuki, Kashiwa Wind Tunnel Working Group, University of Tokyo, JAPAN

E-mail: kfudo@daedalus.k.u-tokyo.ac.jp

Division of Transdisciplinary Sciences, Graduate School of Frontier Sciences, University of Tokyo

Department of Advanced Energy

Hypersonic and High Enthalpy Wind Tunnel at UT Kashiwa Campus

Division of Transdisciplinary Sciences, Graduate School of Frontier Sciences, University of Tokyo

Hyper Department of Advanced Energy

"Two" Operation Modes with "One" Heater

Division of Transdisciplinary Sciences, Graduate School of Frontier Sciences, University of Tokyo

SPECIFICATIONS

	Hypersonic WT	Combustion WT
Mach Number	7, 8	Depend on users
Nozzle Exit	200mm dia. Uniform Flow Core 120 mm dia.	Depend on users
Stagnation Pressure	Max. 0.95 MPa	Max. 0.7 MPa
Stagnation Temperature	Max. 1000 K	Max. 1000 degC
Unit Reynolds No.	1 ~ 2 X10 ⁴ (1/cm)	_
Mass Flow Rate	Max. 0.39kg/s	Max. 1kg/s
Test Duration	60 sec	100 sec (or more)
Reservoir	5MPa(G), 4m ³ (X1)	
Heater	Pebble Type + City Gas Burner	
Exhaust	Vacuum Tank (7m dia.)	Open to Atmosphere via Silencer

Division of Transdisciplinary Sciences, Graduate School of Frontier Sciences, **University of Tokyo**

 Department of

 Advanced Energy

Typical Operation Sequence at Hypersonic Wind Tunnel

- •Model is injected after the steady hypersonic flow has been obtained.
- •Pitch Motion Control (-10 deg ~ 10 deg). Model is retracted before the tunnel stops.
- Very Smooth Flow Start, Very Quiet Operation.
- •Maximum Blockage Ration ~ 5 % (Max. dia 4~5cm in case of hemisphere)
- Relatively Long Test Duration (Max. 60 sec)
- •Relatively Short Startup Time (1st Blow 3 hrs after "Switch ON")
- •Short Turn-around Time (1 Blow / Hour)

Department of Hyper Advanced Energy

Typical Operation Sequence at Combustion Wind Tunnel

Schlieren Picture of Jet from M1.8 Nozzole (Cold Flow Test) *Hydrogen Combustion under study

Division of Transdisciplinary Sciences, Graduate School of Frontier Sciences, University of Tokyo